Different Residues on the Surface of the Methanothermobacter thermautotrophicus MCM Helicase Interact with Single- and Double-Stranded DNA

نویسندگان

  • Nozomi Sakakibara
  • Rajesh Kasiviswanathan
  • Zvi Kelman
چکیده

The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea, separating the two strands of chromosomal DNA during replication. The catalytic activity resides within the C-terminal region of the MCM protein, while the N-terminal portion plays an important role in DNA binding and protein multimerization. An alignment of MCM homologues from several archaeal species revealed a number of conserved amino acids. Here several of the conserved residues located on the surface of the helicase have been mutated and their roles in MCM functions determined. It was found that some mutations result in increased affinity for ssDNA while the affinity for dsDNA is decreased. Other mutants exhibit the opposite effect. Thus, the data suggest that these conserved surface residues may participate in MCM-DNA interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA binding by the Methanothermobacter thermautotrophicus Cdc6 protein is inhibited by the minichromosome maintenance helicase.

The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.

متن کامل

Biochemical characterization of the Methanothermobacter thermautotrophicus minichromosome maintenance (MCM) helicase N-terminal domains.

Minichromosome maintenance helicases are ring-shaped complexes that play an essential role in archaeal and eukaryal DNA replication by separating the two strands of chromosomal DNA to provide the single-stranded substrate for the replicative polymerases. For the archaeal protein it was shown that the N-terminal portion of the protein, which is composed of domains A, B, and C, is involved in mul...

متن کامل

Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein

Minichromosome maintenance (MCM) helicases are the presumptive replicative helicases, thought to separate the two strands of chromosomal DNA during replication. In archaea, the catalytic activity resides within the C-terminal region of the MCM protein. In Methanothermobacter thermautotrophicus the N-terminal portion of the protein was shown to be involved in protein multimerization and binding ...

متن کامل

Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ...

متن کامل

Biochemical Characterization of the Methanothermobacter thermautotrophicus Minichromosome Maintenance (MCM) Helicase N-terminal Domains*□S

Minichromosome maintenance helicases are ringshaped complexes that play an essential role in archaeal and eukaryal DNA replication by separating the two strands of chromosomal DNA to provide the singlestranded substrate for the replicative polymerases. For the archaeal protein it was shown that the N-terminal portion of the protein, which is composed of domains A, B, and C, is involved in multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010